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ABSTRACT

Hamedi, Ali Ahmed. Statistical Inference for Some Excursion Characteristics
of Gaussian Process. Master of Science Thesis, Department of Statistics,

Yarmouk University, 2011 ( Supervisor: Dr. Moh’d T. Alodat).

In this thesis we find several classical and Bayesian estimators for the variance of
the derivative of a smooth stationary Gaussian process based on its durations and
upcrossings above high thresholds. Also, we derive the predictive density of a
future duration and number of upcrossings. Moreover, we use a simulation to study
the bias and the mean squared errors of the derived estimators, Finally, we apply

our findings to meteorological data.

Keywords: Gaussian process; Duration of excursion set; Upcrossings; Bayesian

statistics; Grouped data
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Chapter One

Introduction

Stochastic processes in particular Gaussian processes, are widely used in several fields
of science. They have various applications in engineering problems, especially in
fields of reliability and safety analysis of structures. It is always necessary and
important to evaluate extreme values of the distribution of a random process, since
these extreme values represent events of danger or unsafe state of a system. For
example, Gaussian processes are used to model several random responses arise in
engineering such as the load of a communication system, sea surface elevation and
wind speed (Alodat, 2009; Alodat and Anagreh, 2011), where studying extreme

values of such random responses is of central interest.

Extreme values assumed by a random process above a given large threshold say u, are
considered as a measure assess of reliability or unavailability of the system modeled
by that random process. Also the number of times or upcrossings that the process say
X(t), crosses the level u is another measure of system reliability. The length of the
time interval between an upcrossing and the subsequence downcrossing is also a
measure of system unavailability, since it represents the time that the load of a system,
modeled by X(t), will spend above u after an upcrossing, see. In Figure 1.1 we give

an illustration of upcrossings, downcrossings and durations of a process X(t), above

u.
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Figure 1.1. Upcrossings 2, downcrossings , and a duration s = t; — t; of process

X(t) above a threshold u.

After extracting these durations from a realization of the sample path of X(t), then we
may employ these durations to draw inferences about the processes X (£). However, it
is difficult to give a smooth realization of X(t) in practice, i.e., it is not easy to realize
X(t} on a smooth grid of [0,T] in some studies. For this reason, extracting the
durations of X(t), in [0,T] can not be done accurately. Instead, we are able to observe
the durations of a process as grouped data. Hence, if S, ..., Sy represent the durations
of X(t), above u in [0,T], then the grouped data of these duration is
{(.n1), ., (k41 ni41)}s where I, ..., I, 135 a partition of (0, ) and n; number of
S;'s that fall in iy j=1,..,k+1. This grouped data can be employed to make

2
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inference about the process X(t). For example, a climate observatory in Jordan
records the wind speeds every four hours through the day, ie., we halve six
measurements for the wind speed for each day. If an upcrossing occurs between two
consecutive measurements, then it is not possible to know exactly what is the duration
of the wind speed process started at that crossings which means that the durations of
the wind speed process are observed in practice as grouped data. Making Bayesian
statistical inference about a smooth Gaussian process based on its level crossing
statistics has not been addressed in literatures as a grouped data problem. Tackling
this problem, from grouped data viewpoint, pushes us to develop inferential tools to
analyze such data. The rest of this thesis is organized as follows. In chapter two, we
introduce the reader to Gaussian processes and their statistics. Also, we state the
problem of this research. In chapter three, we derive classical and Bayesian estimators
for the variance of the derivative of a smooth Gaussian process. Also, we derive the
predictive density of a future duration. Then, we present a simulation study to
compare these estimators. In chapter four, classical and Bayesian estimators are
derived again, but based on the number of upcrossings of high threshold. Similar to
chapter three, predictive densities of future number of upcrossings are also derived.
We close the chapter by presenting a simulation study to compare the estimators

obtained in this chapter. In chapter five, we apply our findings to real data from the

field of meteorology. Finally, we state our conclusion and future work in chapter six.


omars
Text Box
.
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Chapter Two

Statistics of Gaussian Processes and Literature Review

2.1 Introduciion

By a stochastic process, we mean a family {X(t),t € T} of random variables
indexed by a non-empty set T € R. For a random process X(t), the set of
distributions of the random vectors (X(ty), ..., X(t,)), ty, tp ..., t, ET,n=l,2,
3,..., are called the finite dimensional distributions of X (t) and they characterize
the distribution of X (¢).(Schervish, 1995). A stochastic process X (t) is said to be a
Gaussian process if for every ti,t,, wirty, n=1273.,the vector
(X(t1),....X(t,)) has a multivariate normal distribution. Although every
stochastic process is characterized via its finite dimensional distributions, a
Gaussian process X(t)is characterized via its mean and covariance functions

which are respectively, defined by

ux(t) = E(X (1)), teT.

and

Ry(ty,t2) = Cov(X(t) , X(t)), t,.t, € 7.
A random process X(t),t €T is said to be strict stationary if
(X(t1), ., X(t,)) and (X(t; + 1), ., X(t, + 7))" have the same distribution for

alln=1,2,3.., t,..,t,,TE T. (Katatbeh et al, 2007).
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It is easy to see that a Gaussian process X (¢) is stationary iff py (£) = ,

and Ry(ty, t2) = Ry(t; — t,), for all t; ,t,,t € T. If X(t) is stationary, then it is

covariance function is written as R, (t), where t = t; —t,.
In this thesis, we are interested in smooth Gaussian process.

A Gaussian process X(t),t € T is said to be differentiable in mean square sense

(m.s.) at t, with derivative denoted by X(t) if

2
E(i“‘;";"‘—“l—)?(t)) >0, ash - 0.
(Hwei Hsu, 1997) Also, X(t) is said to be almost surely (a.s.) differentiable at ¢, if

Xt+h)—-Xx(t)
h

converges a.s. to some random variable. If X(t) is differentiable in m.s. and a.s,

senses, then the two derivatives are equal a.s. So we denote them by X(t).

It can be shown that a stationary process X(t),t € T is differentiable (in mean

square or almost surely) if its covariance function Rx(t) has the following

representation (Leadbetter and Spaniolo, 2002)

R(®) =0?~2 4 o(h?), ash -0, (L1)
where 4 = Var(X(t)) and 02 = Var(X(t)).
Also, a stationary process X(t)is said to be an ergodic process if for every

integrable function f(x), we have
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limre = fy F(X(®)dt = Ef(X(0)) as,

where T is the length of 7. The ergodicity of X(t) will help us to make statistical
inference about the process X(t) based only on the time history of one long
realization of X(t). It is well-known result that, a stationary Gaussian process X (t),

with variance function Ry (t), is ergodic if R(t) — 0 as t — oo (Adler, 1981).

Gaussian processes arc widely used in application because their finite dimensional
distributions have many good properties such as closure under both
marginalization and conditioning. Also, Gaussian processes are closed under

differentiation and integration.

In the next section, we present some important statistics of a differentiable

Gaussian process. These statistics will be of central interest in this research.

Let X(t), t € [0,T], be a differentiable Gaussian process. Adler and Taylor (2007)
define the excursion set of X{t) above the threshold u as the set of all points

t € [0, 7] for which X(t) = u. If we denote this set by A(X, u, T), then
AX,u,T) ={te[0,T): X(t) = u}.

The excursion set of a Gaussian process has been studied extensively in the
literature (Adler, 1981; Alodat and Al-Rawwash, 2009; Adler and Taylor, 2007).
For large u, we may think of A(X, u,T) as the set of points where the process X(¢)

assumes extreme values. As u — oo, Adler (1981) shows that the excursion set of a

6
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Gaussian process decomposes into a finite union of disjoint intervals called clusters
or clumps. The lengths of these clusters or clumps are called durations and they are

asymptotically independent and identically distributed where the - common

asymptotic distribution is the same as that of the random variable S = 2 /% ,

where Y ~exp l). Moreover, the number of these clusters asymptotically follows a
p

Poisson point process with rate @ where a is the mean number of local maxima of

the process in [0, T'] (Adler and Taylor, 2007).

Another important statistic of a random process is the number of upcrossings. The
process X(t) is said to have an upcrossing of u at t, € [0, T], if X(t,) = u and

X(ty) > 0. If N(X,u, T) denotes the number of such points for a differentiable

Gaussian process X (t), then

1
TAZ _u?
EN(X,U,T) =_27'[0' e 2o

(Leadbetter and Spaniolo, 2002). The random variable SUp;eorjX(t) has central
interest in several applications of processes to engineering. The distribution of this
random variable has no closed form in general except for some speed cases. Hence
an approximation of p{sup.e(o X (t) = u} could be useful. It was shown that the

following approximation is accurate for large z and T

p{supeeron X (t) = u} = EN(X,u,T).

7
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1 1
Since EN(X, u,T) is a function of A%, then estimators of the parameter Az are needed.

The statistics of a random process can be employed to draw conclusions about the

parameter 2. Also, they can be used to construct prediction intervals for future

durations or functions of these durations.

1
The first estimator to Az when o is known was introduce by Rice (1945) which was

related to level crossing i.e.,
12 z
B =exp (5';—2) NX,,T) ... (1.2).
1 1
It is easy to check that E (}{z) = Jz,

Holm (1983) used the maximum entropy method to find an estimator for the
spectral moment. His estimator has no close form. Cabafia (1985 a, b) proposed an
estimator for the second spectral moment of a smooth Gaussian process with

known variance based on the values of relative minima and maxima.

Hasofer and Sharpe (1969), Lindgren (1974) and Bjérnhan and Lindgren (1976)

show that

N(X,u,T) — EN(X,u,T) b
cNE Ty - NODT o,

where  o(N(X,u,T)) is the standard deviation of N(X,u,T). In general

o{(N(X,u,T)) is not available for wide range of processes.

8
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Bjdrnhan and Lindgren (1976) give the following estimators of Y= (%)E

Nu(N(Xr u: T))
T ’

Yu=2m

2 T Sy X@)?de
T-1 [ X(0)2de”

e e (1.3)

and

* zn_NO(N(XrOtT))
YO T b

Statistical properties of ¥ and ¥* are studied in Lindgren (1974) and Bjoérnhan
and Lindgren (1976). They assumed that the mean level is unknown and to be

estimated from data. They estimated u by
T
a=T"1 f X(®)dt .u....(1.4)
0

If the process X(t) is ergodic, then i is consistent. Lindgren (1974) has given the

estimator A for A:

T
A=T1"1 f X(®)?3dt ... ......(L5)
0

which is approximately an unbiased estimator of A, i.e., E (i) ~ A
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Since the estimators (1.3), (1.4) and (1.5) are defined as function of X(t) and X(t)
then very smooth realizations of X(t) and X(t) are needed to find these

estimators. Such realization are not available in general.

1
Lindgren (1974) has combined several estimators of Az based on crossings by

different levels. His estimator is given by

-

A

2
57 :_;f (No (N(X,0,T)) + exp (u?) N (N (X, T))

2

+ exp (u?) N_,(N(X, -y, T))).

. 2 . - .
where u is chosen such that u = 35 where & is an estimator of o.

Soukissian and Samalekos (2006) have analyzed the durations of the sea level
elevations by fitting the extracted durations using a given statistical model. Under
the assumption that the sea follows a stationary Gaussian process, they showed that
the Weibull distribution fits the durations. In the next chapter, we rely on Bayesian
approach to draw inference about the process X(t). Hence, we need to introduce

the reader to some tools in Bayesian statistics. In the next section, we present such

tools.

10
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2.2 Bayesian Inference

The Bayesian or modern statistics is a branch of statistics which employs prior
information together with experimental information to draw statistical inference
about a population of interest. This kind of statistics has been used extensively in
literatures through the last two decades due to the discovery of markov chain
monte- carlo method which removed several computational problems. In this kind
of statistics, information from two sources namely experiment and prior knowledge
are combined and then to be used in making inference about the parameter of
interest. The prior knowledge about a parameter of interest say A is given by a
probability distribution of 2 denoted by n(4). The distribution (1) describes the
degree of belief or our experience about the values of 1 before getting the data
(Berger, 1985). In the following, we assume that A is a random variable which has
a distribution 7 (4) called a prior distribution of 2. Let ¥ be a random observation
from f(y|A), the conditional distribution of ¥ given A.Then, the joint distribution

of Yand A is

fAy) =fOl) =)

and the marginal distribution of Y is

my) = [ f(yIA) n(2) dA.

By combining the sample information contained in f(y|1) and the prior

information contained in (1), our knowledge about A can be updated, using the

It
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Bayes rule, via

f1A) =(2)

n(Aly) = )

The distribution w(4]y) is called the posterior distribution of A. In Bayesian
statistics, it is accepted, to various researchers to replace m(2) by a non-negative
function which makes the integration of f(y|A)m(2)finite. Such n(A) is called an
improper prior for A. Bayesian inference under improper priors may be interpreted
as a weighted likelihood inference. In Bayesian statistics, the loss function is used,
instead of mean square error frequents statistics, to quantify on error in a decision
about A. A well-known loss function is the square error loss function which is

given by

LIA9()) = @) - 1%,

where () is our decision about A. Also the risk function and the Bayes risk can

be used to evaluate decisions about A. The risk function is

R(4,9(») = EynL(A,9(Y)).

and the Bayes risk is
r(m, 9(y)) = E;R(A,9(y)).

In Bayesian, the smaller the Bayes risk, the better the estimator. In this thesis, the

estimator 9(y) which minimizes the Bayes risk or the posterior expected loss

12
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EL(A,9(Y)) is called the Bayes estimator of 1. These concepts of Bayesian
statistics will be used in next section by assuming a prior distribution on A, the
smoothness parameter of a Gaussian process X(t), t € [0,T]. So we update our
knowledge about A using the information in S1,..,8y, where S,...,Sy are the
observed durations of the process X(t) above a high threshold u. As a prior

distribution for A we will assume that 1 has the Gamma distribution with hyper

parameters a and b.

Now, assume that we are interested in predicting a future value from f(y|A), say Y.

The predictive pdf of ¥ given the data ¥'is

9610 = [ gGI 0 n@aly) ar

The pdf g(y|x) can be used to make statistical inference about the future value y

(Berger, 1985; Bolstad, 2007).

2.3 Statement of the Problem

In this thesis, we assume that we have a differentiable, stationary and ergodic
Gaussian process X(t), t € [0,T;], with covariance function admitting the
representation (1.1). Let N be the number of clusters of the excursion set of X (t) in
[0,T;] a bove large u. Given N > 1, let 5j, ..., Sy denote the durations of these

clusters. According to the previous sections, we have the following

N = N(X,u, Ty)~Poisson(a),

13
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and given N > 1, 5y, ..., Sy are independent and identically distributed such that
215
S~ (51) = R exp (-3 uis?), s> 0,
where a is given in Section 2.

The first step, in this thesis is to find several statistical inferences (classical and

Bayesian) about the parameter 4, such as point and interval estimation.

Let M be the number of clusters of the excursion set of X (t) above u in [T}, T,] and
V1, ..., Viy represent the duration of these clusters. Our second step is to use the data N,
S1s ., Sy to find prediction intervals for one duration V1 . Since the durations S, ..., Sy
are in general observed only up to intervals, due to lack of a smooth realizations of
X(¢), then we will rely on the grouped data approach to find inference about 1. The
motivation of this proposed research comes from power engineering where the wind
speed is used to generate the energy via turbines. At a very high wind speed, turbines
should cease power generation in order to be protected from damage. If X(t) denotes
the wind speed at time ¢, the statistics Vinins Vnax represent the minimum and

maximum petiod of power unavailability, the quantity P=V, + ...+ V), represents the
total time of power unavailability in the future time interval [Ty, T;] and P; =EP‘5

represents the time portion of power unavailability for each duration. Having the
distribution of these statistics, we may report some inferential statistics about the

reliability of the power generation system.

14
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Chapter Three

Inference Based On Durations
3.1 Introduction
In this chapter, we derive Bayesian estimations for the parameters A and ¢ based
on a sample of durations S,...,Sy, say. We assume that these durations are
observed up to disjoint intervals. Moreover, we derive the predictive density and
prediction intervals for future durations. Finally, we conduct a simulation study to

look at their performance in term of bias and mean square errors with respect

classical counter parts.

3.2 Likelihood Function

For large u, the duration of X(t) above  has the following asymptotic pdf

u?ls 1
fs,(s1) = Z L exp (—guzlslz), 5;>0

To simplify our analysis, we consider the following transformation

d .
LetS = VW. Then ds = -27% The pdf of W is

u?i

1
fww) = 5 exp (—guz/lw), w> 0.

It 1s straight forward to show that § and W contain the same amount Fisher

information about 1. Hence any inference about A based on a sample from fww)

15
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is equivalent to that based on fs, (s,), i.e., the inference will be invariant under the

transformation § = VW.

Let Jy = (0,8),., ;= (= 1)8,j6),j = 2,..k and Iy, = (kS,®) be 2
partition of (0,). Let ¥; denote the number of Wj’s that fall in /;. Conditioning

on N=n, we have that (Y3, ..., Y, )~MN(n, p,, ..., pr). ie.,

(Yl’ . YklN = n)~MN(n, P1: ...,pk),

where

pi= | fwwdw,
1

1 1
= exp (—Euzlé'(j - 1)) — exp (—§uzlc5'j) v Ji=12,.0k

and

12
Pr+1 = €Xp (—gu /Mk).

1 ul 1
We calculate the pdf of ¥ = (¥}, ..., Yy, ) as follows. Let @ = 211% e 22 = A2

»

2
T w
where ¢; = ol za? , Then

Z:Of=1 P(Y; =y, Yer1 = Vs, N =n)
N> ) 1] 2 - ]
f(FIN =21,4,0%) POV 1)

16
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_ P(Yi=y1, . Y1 = Vke N= Y1+ + Yig1)
1-P(N=0) ’

_ P(Y; = Y1r s Year = Vs IN = yp + "t Vie1) v
1 — exp(—a)

PN =y, + -+ yii),
Having in mind that ¥ and N are independent, the last formula simplifies to

_ 01+ Vi) P2 e Preg et exp(—a) a1t i

2
fOIN 21,209 Vil Vi (U —exp(—a)) (vy + - + Yiey)!

_ pl}'1 ---pk+1yk+1 exp(_a)a.)ﬁ"'"""J’kﬂ
il Y41t (1 = exp(—a))

plyl » pk+1J’k+1 exp(_a)a}’1+"'+yk+1
B Y1l Yie1! (1 —exp(—a))

Finally, formula of f(¥|N = 1,1, 5%) is given by

_ exp(—a)(ap; ) ... (@py4q) et

>1,4,0°
fOIN 21,2,6%) Y1l Vee1! (1 — exp(—a))

’

¥; € {0, 1,2, ...},i =1.,k+1 andy1 +t Ve 2 L
Note that f(y|N > 1,4, 02) can be written as

_ exp(—ap;)(ap,)” ... exp(—ap; 1 ){@pysq )+
V1! Yer1! (1 — exp(—a)) ’

17
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exp(_a)ayl+"'+yk+1
Qa- exp(—a))yy! o Yiee1!

P1’t o Piar i,

¥i € {0,1,2, ...},i = 1, ,k+ 1andy1+---+yk+1 = 1.

By substituting the values of a and p, ...,py44 in the last equation and employing

the Binomial theorem, f(¥|N > 1,1, 02) appears in the following form

1ok+ 1
€y Y1t Yk J7Ei=1 Vi g— a1 A2

FOIN=21,4,0%) =

T X
(1 - e_cllz)h! e Vier1!
1 & 1 Vit tYies
exp| — -éuzlé’Z(j -1y (1 — exp (—-éuz?té')) ,
=1
Yit+t¥Vpe

1 1 ks
Cl}'1+"'+3’k+1 e"Cxlz;{'z“zJEz ¥j

+ ot .
— T Z (yl ; yk+1) (_1)[ X
(1 bt e_cilz)y]_! ...yk+1! i=0

k+1

1
exp —§u216 Z(i—-l)yj+i ,
=

Yi € {0,1,2,...},’: = 1, ..-,k+1andy1+"'+yk+1 = 1.

Let Z, = {0,1,2,...} and Z£*? is the Cartesian product of k copies of Z,. Also let

L{Z{*1) be the hyper plane of Z¥ defined as

L(ZEH) = {(}'1: ws Vi) € ZI+‘+133’1 +eot Yy 2 11

18
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Now,

the L(Z*') represents the support of the pdf f(y|N = 1,2,02). To simplify

writing, we introduce the following notation. Letd = i ;‘211 Vi
1 k+1
A,k 6,5) = %6 Z(j — 1y +i),
j=
and
Y — (iqyi f2d
Vi) = D' ().
Hence
GUaeo% LY (y) exp(=A,u k,5,y)2)
fOIN21,2,6%) = ; , , .
(1 — e—c,ﬁ) = YitewYi4a'
y € L(ZKD),

In the next section, classical and Bayesian inferences are obtained based on the

likelihood L(4,6%) = f(y|N > 1,4,02).

19
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3.3 The Maximum Likelihood Estimator for A

3.3.1 Case 1. ¢2 is known

Assuming that the parameter g2 is known, the MLE for the parameter A is derived

as follows:

1
,'[de—cxﬂ 2d

fGIN21,2,03)=——

(1 - E—Cl’ﬁ) i=0

Vi(y) exp(—A4; (e, k, 8, y)2) ,y € L(Z}*Y).

The log likelihood is

1 :
logf(¥IN 2 1,4,0%) = —¢;AZ — log (1 — e‘”l’“) + dlogh

2d
log ) V() exp (—Ai(uw.k,5,1)1) ).
i=0
Taking the derivative of log f(¥IN = 1,1,02) with respect to A and setting the
derivatives to zero, we find that
1 1
1 1 qATZem9A?

'—'—(.'1/1_2 + 1 +
2 (1 - e‘cl'")

2
2330 ‘fl(y) exp (_Ai(uJ k' 6: y)’l) (-'Al. (u, k: 61 y))
1"230 Vl(J’) €xp (_Al. (u, k’ 6: y)/’{)

dA™1 375, Vi(y) exp (—Ai{w, k. 8,9)2) _
(Vi) exp (—A;(w, k, 8,y) 1)

20
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The numerical solution A of the last equation, which satisfies the condition

0% log f(yIN = 1,4,6%)|;_3 < 0, yields the MLE of A.

3.3.2 Case 2. A and o2 are unknown

Assuming that the parameters A and ¢ are unknown, we the MLE’s for the
parameters A and a2, The likelihood function of A, g? is

L(A,0%) = f(y|N = 1,2,0%), where

1 1 u?
exp (—¢, A2(0%)"2e 267)

fOIN = 111'02) = 1 1 _u?
(1 —exp (—c, AE(GZ)"ie"W))

du?

z2d
D Vi) 1(0?) e exp(=Ay6a, k. 8,7)).
I=0

Finding the first partial derivatives of log f(y|N = 1,1, 62) with respect to both A

and o2 respectively, and settingthese derivatives equal to zero, we find that

1 1 u?
logf(¥IN = 1,4,0%) = —c, A2(0?) " 2e 207 -

1 1 _u?
log| 1—exp (—cz Af(az)‘ie“iﬁ) +
2d L2
log (Z Vi0)A%(o%) ™™o exp (~Ay(u k. 5, y):t)).
i=0
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T - .
where ¢, = Py The first derivative w.r.t A is
e SR G
—c; A7 2(0%) "2 207
2

d
—_— > 2y
d)‘logf(le >1,1,07%)

£ SN ISPE S
exp (~—c; A2(02) 2e 202 )¢, AZ(02) Ze 207

1 1 u?
2 (1 — exp (—c; A2(6?) 2e 207 ))

2o Viyexp (—4,(u. k, 8, ) ) (~4,(w. k., 5,))
o Vil»)exp (~4;(x, k, 8, y)2)

A-ld Z!z'—c'io Vl' (y) €xp (_Ai(ui k; 61 y)l) —
2 Vi)exp (—A,(w, k, 6,¥)1)

Taking the derivative with respect to o2 and sefting it to zero

2

1 3 u
d AZ(62) Ze 207 (1 — ul(g?)!
—5logf GIN 2 1,4,02) = = (0°)2e 02( (o))

1 1 _u? 1 3 u?
exp (~c; A2(a%) e 207 )¢, A2{0?) Ze 207 (1 — u?(e?)™1)

1 1 _u? +
2 (1 —exp (—c; ,17(02)‘59_2&5))

d(o®)~%u? Ti% Vi(w)exp (~Ai(w k.8, )3)
24 Vi(»)exp (A (1, k, 8,9)2)
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d(o2)™ 524 Viy)exp (— A,k 8,9)2)
2 Viexp (4w k.85,

The numerical solutions (4,02) of the last two equations which satisfies the

*logf (¥|N212,02)  3%logf(y|N21.4,0%)

" aaz dAda? - :
condition det PogfO|N2140%)  O%logf G|Na120?) | | (AoD=(L5%) <0 1is the
FYFPE 302
MLE’s of A and 2.

3.4 Bayes Estimation for A when o2 is known
In this section, Bayes estimators for the parameters A and o2 are derived.
3.4.1 Posterior Distribution of A

To simplify the work, we may consider the following prior distribution for the

parameter A.

1 1
(1) = ATeqrA? (1 - e"ci‘u) ,  A>0.

Under this prior, the posterior distribution for A is

2d

(AN 2 1,y,6%) A‘H"Z V() exp(~4;(u. k, 8,y)2).

=0
Hence

(AN = 1,¥,6%) = A" Y2 v, (y) exp(—4;(u, k, 6,¥)2) , 1>0,
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where c is a normalizing constant given by

-1

2d -
c= (; Vi(y)j0 AT exp (—~4A; (u, k, 8,¥)A) dl) ,

2d -1
_ ( V:OOI(d + 1 + 1)) )

= Ai(u' k, 6"y)d+r+1 - F(d +r + 1):
where
2d -
) V)
1 i=0 Ai(u,k,8,y)24r+1

Finally,

2d
R(AIN 2 11 y: O'z) g Cld*'rz Vl (y) exp(—Ai(u, k' 6' y))_)'

i=0

c (y) d.'+r

—F(d+r+1)

Z Vi(y) exp(~4,(u, k,6,¥)2), 21> 0.

i=0

3.4.2 The Bayes Estimator of A

The posterior distribution contains all information about A. Under squared error

loss function, the parameter 1 is estimated by posterior mean. Let Ag 1 denote the

Bayes estimator of A. Then
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() 2d
g1 =E@AIN21,y,¢%) = mz Vi(y) X
i=0
f ABTH exn(~A; (u, k, 8, y)A) dA,
0

Vi)
Al-(u, k, 5, y)d+r+2'

2d
={d+r+1c(y)
2

(y) 2d

C

E(AZIN = 1,y,02) = mz V,-(y) b4
i=0

-
] A7 2 exp(—A; (u, k, 8, y) ) dA.
0

Vi(»)
Ai(u, k, 6, y d+r+3°

2d
=d+r+2)d+1+ 1)01(.7)2
i=0

Thus, the posterior variance of A is
Var, (AN = 1,y,6%) = EQZ|N = 1,y,02) — 22.

3.4.3 The Generalized Maximum Likelihood Estimator for 1

In this section, we find the generalized maximum likelihood estimator of A. To find

the GMLE of A, we take, the log likelihood of T(A|N = 1, y, ¢%).

ie.,
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2d
c1(y)
lognt(A|N = Ly, 0’2) = log (mz‘a Vi(y))ld'!'r exp(—A4;(u, k, 5, y)A)),

Take the first derivative of logm(A|N = 1, y, %) with respect to A, we get

_ o Vi(¥)Bi(u, k. 8,y,2)
AT REV(O) exp(—4;(u k, 8,7)1)

d
I = 2
1 log m(AIN = 1,y,6%)

where

Bi(w,k,8,y,2) = —A;(u. k, 8, Y)A*" exp(—4;(u, k, 5, y)2) +
(d + )AL exp(—A;(u, k, 8, y)A).
The GMLE of , denoted it by A4 £, is the solution of the equation of A.

iZSO‘G(y)Bi(u,k,é‘,y,l) —
AT 322 Vi) exp(—4; (w, k, 8, ¥)A)

0.

3.5 Bayes Estimation for 2 and o2

In this section, it is assumed that both parameters A and o?are unknown. Under this
assumption, classical and Bayesian estimator arc derived. Also, we derive
prediction intervals for a future duration. Since A and o2are unknown, then we

need to rewrite the pdf f(¥|N = 1,2, 52) in the following form.

1 2 1 2
> u ) u
oo (-5 i ) (322 o)
fOIN21,20%) =

26
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k+1 2d

1 1
exp —§u2/16Z(j -Dy; (1 — exp (—guzld)) )
j=1
y € L(Zk),
To éimplify, we introduce the following notation. Let ¢, = i and

Vo) = (-0 (3%)

Hence

1 1 u? 1 1 w2\
exp (—Cz ﬂ,'f(o'z)_z.e 202 ) (}{E(o’z)_fe 20’2)
fOIN=z1206%) =

1 1 _u? %
1 —exp (=c; 22(c?)"Ze 247 )) Y1l Yieta!
. K+1 1 2d
exp —-guzlaz(i ~ 1)y (1 — exp (—guzlé‘)) ,
=1

y € L(ZI D),
Using the Binomial theorem, we can write f(y|N = 1, 4, 62) as follows:

1,1
c3%exp (—c, A2(0%)"2e " 207)

fOIN 21,4,0%) = —
(1 —exp (—c, AZ{¢2) Ze¢ 202 ))

2d

(61 -de o Z V() exp(—A;(1,k,5,¥)2)

Y1l Yiea!

2

i=0
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y € L(ZK+Y),

To simplify the work, we may consider the following joint prior distribution for the

parameters A and ¢2.

11wl
A (1 — exp (—c, AZ(¢%) 2e 20 ))
(4, 6%) = " ——~ 0°>0,1>0,
(%) %exp (—cz zi(az)"fe"'z?)

- 3.5.1 Posterior of A and o2

Under this prior, the joint posterior distribution for A and o2 satisfies

2d
r.iu2
(N 2 1,y) « (63 " e Z Vi(y) 27t exp(—4,(u, k, 5, ¥) 2).

i=0

Hence

(4, 0*IN = 1,¥) = c(y) x

2d
du?
ATi(g?) ™42 aT Y Vi(y) exp(—Ai(w, k. 8,9)2),
i=0
where
2d 2 -1
(o] d'l'.l o
c(y) — (Z V;'()’) f (( az)—d—rze7 f Ad*‘ﬁ e-Ai(u,k.rS,y)Ad /1) daz) ,
—0 0 0
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-1

2d
—_ g F(d + rl + 1) o 2 —d_.rz ﬂ‘; 5
- (; V‘(y)Al-(u, k, 5,y)d+r1+1f0 ()™ e o do

‘) = (F(d +ry+ DI(d+ 75— 1)2 v,(y) ) |

(duz)dﬂ’z-l Ai(u- k&, y)d+r1+1

(du2)d+r:-1 2d V,(y) .
T@+n + DN(d +7, - D\ LAk, 8, y)n71 |

B Cl(y)(duZ)dﬂ'z—l
T TA+n+DIMd+r,—1)

where

SO )_1

C1(_‘)’) = (t=0Ai(u' k, S’y)d+r1+1

Finally, the joint posterior distribution of 1 and 2 is

du?
¢ (3) (du?)d+r2=1 3d4n (@) d"'ze-?

Fd+r +Drd+r, — 1)

(Ao’ |N 2 1,y) =

2d
Z Vi) exp(—A4;(u, k, 5, y)A).
{=0

29



© Arabic Digital Library - Yarmouk University

3.5.2 The Marginal Posterior Density of 4

The marginal distribution of A is obtained by integrating the joint pdf with respect

to o2,

Integrating with respect to o2 yeilds

€, (y) (duZ)d-!-rz-l;ldi-rl

-1 =

2d oo du?
D VD oAk 830 [ (02 me o 4o,
i=0 0

2d

c d+ry
- r(;(i’)i +1) Z Vi) exp(=A(w k. 6,92,

2d 2d
- 216214169) B
a Z A(u, k, 8, y)dtn+t m;(2) = Z w;m;(2),

i=0 =0

where

ViON/Ai(u k, 6, y) 2ttt
w; =
j=0 4; (u, k, 8, y)d+n+1

and

m;(A) is the pdf of Gamma (d +r+ 1’A-(u:cb'y) .
1 il

The Bayes estimator of 2 is
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Toa = BN 2 1,9) = 30 1)2 ")

[ AT exn(—A,(u, k, 8, y)2) d2,
0

w.
=(d+r, +1 Z——‘—
@+ +1) : OAi(u-k-&y)
i=

(RN 1,y) =0 ¥
_,y)—m;W@)x

[+.0]
f At ey (~A,(u k, 8,y) 1) dA,
0
(d +T1 + 1)(d+7‘1 +2)z___""
Ai(u k 6 y)Z

Hence

Var(AIN = 1,y) = (d+r1+1)(d+"1+2)z,4( k6y):
uk,8,y

2

2d
d+r +1)2 Z—-L :
( r1 ) (i=0‘4i(u:k:6.y))

31



© Arabic Digital Library - Yarmouk University

3.5.3 The Marginal Posterior Density of o2

Following similar argument as in the previous section, the marginal distribution of

o? is obtain by integrating joint pdf with respect to A. Integrating A out, we get

(N =2 1,y) =

1) ()71 2y T
I'(d+ry+ DId+r,—1) ZV(") %

f A iexp (—A;(u, k, 8, y)A) dA,
0

_ ()@Yl e Vi(y)
B I(d+71, — 1) L Ai(u, i, 8, y)Hm+t

2d
— c;(V:(y) . ,
B Z—Ai(u. k, 5,y)d+ri+1 m(o*) = ; w;;(0%),

where
Vi) /Ai(u, k, 8, )2+
w; =
e V)
j=0 Aj(u, k, 5’y)d+r1+1
and

m(0?) is the pdf of IG (d + 1, — 1,7).

The Bayes estimator of o2 is

= o2 ¢, () (du?)d+mz—1 Vi(y)
%1 =E(@*IN 21,5) = T{d+r,—1) ZA (@ k, 8, y)arns1 *
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2
f (CT )-d-—-rz+le 02 dO’

2d
_ aMVi()
= du?(d + rn—1) zAi(u,lk' 8’;,)d+?'1+1'
i=0

2ydir,-1 28
E((6)IN > — (du?) a Vi)
((a )N =1, J’) rd+mr-—1) £ Ai(u, k, 8, y)d+n+ X

4 du?
(6%)~412¥2e7 67 g2,
0

(du?)? < aOWB)
T@rn-(d+n- 3) & Ay(u,k, 8, y)o+mor

272 2d
Var(d*IN = 1,y) = (d) aOwi)
(d+1—2)(d+r, - 3) Lo A;(u, k, 8, y)dtn+l
=0

2d 2
du® _ 132 a (V)
u (d + T2 1) (i=0 Ai(u, k, 6, y)d+r1+1 .
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3.6 Predictive Density of Future Duration
3.6.1 Casel. g %known

Let S; be a future duration of X(t) above high level « in [T,T +Ty], T,Ty > 0.
Also, Let M be the number of durations of X(t) above u in [T, T +T,]. To find the
predictive density of S; given y and N > 1,M > 1, we first find the predictive
density of S = VW givenyand N > 1,M > 1. The predictive density of # given y

is

JWINZ LM =1,y) = [ FOD TAIN 2 1,4 > 1,y,0%)dA
]

u?e; (y) exp (

1
= —— 2
8r(d+r+1) u AW)X

8

2d .
D) [ 29 exp(- A, 5,00 di,
i=0 0

2d
_au? Z
~8r(d+r+1) - Vi)
® 1
f AdHTHleyp (— (Ai(u, k,6,y)+ guzw) A) da.
0

Hence,

Ouid+r+1) = 167

gWwINZ1,M>1y)=
8 1
j=0 (Aj(u, k,é,y) +§u2w)

d+r+2*
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The CDF of g(w|N = 1,M > 1,y) is given by

GWwWIN=21,M>1,y)=0forw<0andforw >0,

2d
GWINZLM>1,y) = c1@)Z Vi(y) x
=0

1 1
Aj (u, k, 6, y)d+r+1

d+r+1 |°

(Aj(u, k,8,y) +%uzw)

The solution of g(LIN 2 1,M 21,y)=q; and g(U|N = 1,M = 1,y)=1 -y,

where &y, @, > 0 and @ = a; + a, isa 100 (1-a)% prediction interval of W.
A 100 (1-a)% prediction interval for W is [L, U], where L is the solution of

L
f gWwIN =21, M > 1,y)dw = a,
0

And U is the solution of

o
f gWw|N =2 1,M = 1,y)dw = a,,
U
Hence the 100 (1-a)% for S, is [L?, U?]. The mean of g(w|N = 1,M > 1,y)
serves as a prediction of . Hence, W, the prediction of W is

(o2}

ES2y)=EWIN21LM=1y) =

o WIWIN = 1,M = 1,y)dw,

2d ‘
e +r+1) * wdw
= 8 VJ (y) 1 d+r+2’
j=0 ’ 0 (Aj(u, k, 6, y) + '8_qu)

35



© Arabic Digital Library - Yarmouk University

had z—Aj(u,k,J,y)

Zd+r+2 Z,

8c,(¥)(d + 7 + 1) =
2 s )er,-(y)f
=0

Aj(uk.6,y)

8c,(¥)(d + 7+ 1)
=— uZ ;Vi(y)x

( ! Ak, 6,y)
(@04, k8,307 (d+ 7+ DA (uk,6,y)27 )

_8a(d+r+ 1)? V()
u? = (d+r)Yd+r

+ 1DA;(w k, 8, y)d4r
2d
- _8a0) §__v0)
ul(d + 1) L3 Ay, K, 8, )T

The E(W?|N = 1,M > 1,y) serves as a prediction of §;. Hence

EGSily) =E(W2|N 2 1,M 2 1,y) = [T wigwIN = 1,M 2 1,y)dw,

1
_aud+r+1) - o wzdw
B 8 £ V}(y) 0 1 d+riz’
j=0 (Aj(u, k6,y)+ guzw)

_aOuid+r+1) - V;'(J’)er(d“}‘r‘l'%)
a 8

1 r
udA(w k, 8, Ir(d + 1 + 2)

G OWIEN(d + 1+ ) i’: V)

-
ME+T 1) Ly k6, y) 0T

Hence
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Var(SyIN = 1,M 2 1,y) = E(S2IN = 1,M 2 1,3) - (E(S,IN > 1,M = 1,))".

3.6.2 Case2. ¢ unknown

gWINZ LM 2 1,y) = f f FWID T, o?|N = 1M = 1,3)dAdo?
e Yo

80(d +r + )I(d + 1, — 1) 2 4
i=

0 du? o
f ((02)—‘1—1-26-72— A+t eyn (— (A,-(u, k,6,y)+ %uz w) A) dl) do?,
0 0

_u?(d+ 1+ Do () (du)drnt
8F(d + rz S5 1)

2d
du?

oo

2N—d-13 ," % 2

d+r1+2f (o%) e o* do”,
o

462

j=0 (A,-(u, k8, y)+ %uzw)
Finally
e (VuP(d + 1y + 1) o Vi(y)
JWIN=1L,M>1,y)= U '
8 d+ry+2

j=0 (A}-(u, k.6, ) + %u’-w)

EGS{INZLM21,y) =EWIN=1,M 2 1,y) =f wgWIN = 1,M > 1,y)dw
Q

Ot d+rn +1) & V) ® wdw
= = E /
j=0 0 (Aj(u, k,6,y) +%u2w)

d+r1+2'

2d
=8d+7 + D) ) V)X
j=0
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( 1 Aj(u, k;a,Y)
dA;(w. k, 8,4+ (d + DA;(u, k, 6, y)d+n+1 ff

2d
- V;(y)
=8(d+n+ l)cl(y);(d YA+ + 1)Aj(u,k,6,y)d+f}'

24
_ 850) 5)
(d+mn) j=0 Af(un k,8,y)d+n’

1
EGIN>1L,M=1y) = E(wz

=f wZgwIN = 1, M > 1,y)dw
0

1
2
E(S,ly) = widw

V(@) fo ]
(Aj(u, k.8, y)+ guzw)

d+ry+2’

aOi(d +nr + l)i
8
J=0

_aOwid+n+ D VOIBVZAr(d +n + %)
8

1 r’
o udA;(u, k, 8, )M d + 1y + 2)

_aO)Varl(d +r + %)sz V,(»)

ur(d + r + 1) =0 Aj(u k.& y)d+T1+%-

Var(iIN 2 1,M 2 1,y) = E(SZIN 2 1,M 2 1,y) — (E(S5,IN = 1,M = 1, )%
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3.7 Simulation

In the section, we conduct a simulation study to compare the bias and mean squared
errors for the estimators obtained in the previous sections for the case when o is
known. For each estimator, we design the following algorithm to find the bias and the

mean squared error of an estimator A:

1. Inputvalues 4,u,T,k, 8, 0.

1
2. Find py, ..., Pr41 and @ = ¢, 2.
3. Simulate N from Poisson (a).
4, SimUIate Y]_, ey Yk+1 ﬁom MV(H, P, “'ka+1)'

5. Find the value of the estimator according to its definition.

-~

6. Repeat the steps (2)—(5) L times to get L the values of the estimators A ... yAp.

7. Compute bias and mean square error of the estimator as follows:

bias :% iL (4= 2) and

mse = ﬁZf‘:l(ﬁi ~ A)? + bias?

This algorithm has been implemented for the following different values of A, u, T, k, §

and o which are given in Table 3.1.
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Table 3.1 Values of ¢, 4, 8, T, and k used in simulation

(4] 1 2

A 1 2

& 051 152
T 250 300 350
k 2 34 5

Since the sample size N is random and is observed from the experiment, then it is
difficult to do a strict comparison between the two estimators, since the bias and

MSE of both estimators 23,1 and AAMLE,I are influenced by the sample size.

However, we may compare the bias and MSE as functions of the average sample
size. Since the average sample size is a linear function in 7, then it is reasonable to
compare the biases and MSE’s of estimators as functions in T. The results of
simulation are presented in Tables (3.2)-(3.7). Based on these tables we may report

the following concluding remarks.

I. The bias and MSE are decreasing functions in 7, for fixed 6,0,k and A.

2. The bias and MSE are in general decreasing as a function in &, for fixed
T,A,0,k.

3. The bias and MSE are in general decreasing as function in k, fixed T, A, ¢ and §.

4. When comparing Bayes estimator and MLE, it can to be seen that the MLE is

better in general than the Bayes estimator in term of bias and MSE.
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Based on the Tables (3.8)-(3.13) we write the following comments

. For the bias and MSE of the two both estimators we don’t find a clear pattern as

function in %, fixed 8,0, T and A.

. We note from Tables (3.8)-(3.13) that the Bayes estimator is better than the

MLE. This can be interpreted as follows since 1 = 2, is large, then the duration
distribution will assume small values. In this case the majority of observed
durations will fall in the first interval. Hence, small a mount of information
about A will be contained in the grouped data, while the Bayes estimator uses

the prior information to increase the amount of information about 1.

. Its clear that Bayes estimator is better than MLE when A, ¢ are increasing for

values &, for fixed T.
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Table 3.2 Bias and mean squared errors for 15 ,, T=200,6 = 1,1 =1

K Ry St s Hiol R X0 g e
Aga Apy g1 Asy
bias mse bias mse bias mse bias mse
\615" =1 1.98005 |4.68669 [1.17357 |1.94374 | 0.755066 | 0.681885 | 0.505289 | 0.381552
1 0.834278 [ 1.3178 | 0.429361 | 0.50988 | 0.225627 { 0.38534 | 0.110028 | 0.322632
4 5:’..{" 0.484295 | 0.938972 | 0.200962 [ 0.334476 | 0.105816 | 0.496984 | 0.021886 | 0.289539
5 | 029534 [0.602189 | 0.185771 [ 0.778195 | 0.070593 | 0.785895 | 0.051685 | 0.74225
Table 3.3 Bias and mean squared crrors for MLE, T=250, g = 1,A=1
K e S N ERR OIS LR RS [T R SOt [EERERE- S
MLE MLE MLE MLE
bias mse bias mse bias mse bias mse
05 1.12487 | 1.71107 | 0.752347 | 0.863919 | 0.457831 | 0.463542 | 0.267081 | 0.291267
"1-{.;f .10.639361 | 0.526975 | 0.400288 | 0.257689 | 0.250525 | 0.157238 | 0.157578 | 0.119693
-1”;5* - [ 0.380767 [ 0.224014 [ 0.218349 | 0.178416 | 0.136542 | 0.09213 | 0.082909 | 0.074006
50 0.24144 | 0.129276 | 0.124154 | 0.078773 | 0.081036 | 0.076385 | 0.052675 | 0.072709
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Table 3.4 Bias and mean squared errors for A 51

e 2 2 n,’ S P

,T=300,c =1,A=1

ey

AB.I

)'B,I

lﬂ,l

A5

bias

mse

bias

mse

bias

mse

bias

mse

:’] 1.84681

3.56108

1.06439

1.22626

0.672204

0.531245

0.432708

0.260088

“[0.746122

0.667616

0.342015

0.200509

0.152858

0.166779

0.045214

0.079423

~[0.420058

0.272648

0.16278

0.218212

0.034576

0.103625

-0.0214

8 | 0.110874

;- [0.279068

0.2446865

0.119352

0.365403

0.010657

0.133073

-0.01726

0.73105

Table 3.5 Bias

and mean squared errors for MLE, T=300,0 = 1,A = 1

g

MLE

MLE

MLE

MLE

bias

mse

bias

mse

bias

mse

bias

mse

| 0715781

1.1043

0.411658

0.579243

0.224219

0.379402

0.088331

0.27723

0559443

0.463582

0.284288

0.217971

0.150874

0.134842

0.053794

0.109981

1 0.369026

0.205064

0.215073

0.11783

0.095421

0.075318

0.03432

0.073175

o [022943%

0.113143

0.116041

0.068526

0.078708

0.06967

0.037537

0.059275
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Table 3.6 Bias an

2. el

3

d mean squared errors for 13.1, T=350,6 =1,A=1

3 5‘

=

A!l 1

1.

’IB,!

lEf. 1

451

bias

mse

bias

mse

bias

mse

bias

mse

e | 17459

3.15877

0.989905

1.05516

0.609834

0.431875

0.379073

0.19572

© .1 0.690649

0.558567

0.301618

0.156973

0.109612

0.067863

0.002727

0.050694

* [0.380047

0.237346

0.129395

0.099633

0.006158

0.123%47

-0.05985

0.084543

- [0.256688

0.243171

0.077666

0.093745

-0.00596

0.803301

-0.01007

0.166179

K

Table 3._7_Bias a

nd mean squared errors for MLE, T=350,0 = 1,A =1

T

4

R S

MLE

MLE

MLE

MLE

bias

Ms¢

bias

mse

bias

mse

bias

mse

05

0.247205

0.624917

0.130373

0.417233

0.134641

0.37578

0.028234

0.25511

i [0.357307

0.362441

0.113793

0.17912

-0.01732

0.129875

-0.04719

0.93184

10317763

0.199753

0.10188

9| 0.099671

0.017761

0.070074

-0.03333

0.070813

0.216993

0.107475

0.08773

0.06589

0.01881

0.062208

-0.02364

0.052104
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Table 3.8 Bias and mean squared errors for 1,

T=350,0 = _1,11 =2

A’Ptl AI 1 AB,l Al’.‘l
bias mse bias mse bias mse bias mse
’lo"-‘-s‘if"f‘ 1.16952 | 1.55779 | 0.432404 | 0.326378 | 0.072819 | 0.13225 | -0.14192 | 0.1358203
1 [ 0.375411 | 0.388411 | 0.013462 | 2.98005 | -0.1674 | 0.240543 | -0.24407 0.28399
5 | 0282114 171330 | 0.03202 | 125968 | 0.015092 | 0743818 | -0.04765 | 0860576
., [0339766 | 202108 | 0296583 | 17836 | 0.197537 | 17.7802 | 0.126943 | 25,6973
Table 3.9 Bias and mean squared errors for MLE, T=350, o = 1,A=2
L R Sn B I I YR EREIR T I
MLE MLE MLE MLE
bias mse bias mse bias mse bias mse
05 <0.1397 | 0.887971 | -0.25233 | 0.858669 | -0.29672 | 0.866404 | -0.28524 0.874577
1 . -0.13574 | 0.55183 | -0.40445 | 0.536988 | -0.49487 | 0.565588 -0.5101 0.572064
15 0.121762 | 0.247277 | -0.03015 | 0.254274 | -0.06906 | 0.25701 0.11586 | 0.265206
2 ~.{0.112086 | 0.165208 | 0.038746 | 0.163288 | 0.030715 | 0.175685 | 0.003122 | 0.169451
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Table 3.1¢ Bias a

nd mean squared errors for dg;, T=350,0 = 2,1 = 1

Ag

Al

Agq

13.1

Ap

1

bias

mse

bias

mse

bias

mse

bias

mse

- | 1675

2.8909

0.930504

0.924328

0.552422

0.347855

0.331015

0.147902

 [oea0ze9

0.4788

0.259799

0.117755

0.071371

0.048742

-0.0322

0.045428

10349848

0.197353

0.081093

0.065058

-0.02616

0.058911

-0.09774

0.068515

0.214874

0.356617

0.042835

0.79571

-0.04622

0.086509

-0.08557

0.087157

K Sl 2

Table 3.11 Bias and mean squared errors fo

r MLE, T=350,6 = 2,A =1

Y

MLE

MLE

MLE

MLE

bias

mse

bias

mse

bias

mse

bias

mse

. 10066974

0.494227

0.070702

0.480507

0.079445

0.471961

0.043866

0.471743

- [0.054032

0.250681

-0.0678

0.166516

-0.13574

0.152342

-0.19382

0.153673

. [0.159432

0.164778

-0.02055

0.112378

-0.103

0.102798

-0.14664

0.109465

+10.15504

0.112679

-0.02411

0.092666

-0.09112

0.091297

-0.11152

0.080875
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K

Table 3 12 Bias and mean squared €ITorS for AB 1s

T=350,0 =2,1=2

B LS R IR -
Ag4 13,1 Asa g
bias mse bias mse bias mse bias mse
05 110754 | 1.38266 | 0.375249 | 0.253877 | 0.019931 | 0.103944 | -0.20227 0.123791
1 . [0:30659 [ 028686 | 006021 | 0473617 -0.22162 | 0.213811 | 0.2922 | 0.261571
15 ‘[ 0219925 | 4.26048 0.022397 | 0.372956 | -0.07046 | 0.340778 -0.09007 | 0.334448
2 | 018349 21955 028368 | 4.80727 | 0167541 | 114431 | 0.133622 | 117872
Table 3.13 Bias and mean squarcd errors for MLE T 350 o= 2 A = 2 _
K Loy “2 . T ,"_;'_"-,“}' . Dt 3 14 t__ ﬁ5 ‘\_-?.:i«:_.
MLE MLE MLE MLE
bias mse bias mse bias mse bias mse
0%: | 0.17824 | 0.97185% | -0.14392 | 1.09994 | 025619 | 1.08709 0.27304 | 0.976421
03809 [0522765 | 050632 | 0617884 | 3557 | 0.643135 5507 0.638116
: 1—’-5 "1 <0.12991 | 0.344055 | -0.24773 | 0.358703 | -0.28482 | 0.370157 -0.27708 | 0.381657
2 0.059415 | 0.180344 | -0.01449 | 0.202585 | -0.05958 | 0.198003 -0.08294 | 0.221809

47



© Arabic Digital Library - Yarmouk University

Chapter Four

Inference Based On Uperossings

4.1 Introduction:

Let N; denote the number of upcrossings of u by X (t) in I =((j—-1)8j8),6 >0,

2

1 u
J=1, 2, ..., k. Then N;~P(cAz), where c :-2% e 2a2, Also, Ny, N,, ..., Nj are

asymptotically independent having the joint pdf

L (ch2)

K
flnyung, .l o) = 1—[ e—cA?

J=1

¥

g
nj.

Ny
F L
= c'a e—ckaz

k N
j=1 1!

»

1
when N =n; + n, + ..+ ny. It can be noted that N~P (kcﬁ).

In this chapter, we find several Bayes and classical inferences about A based on the
data N, N,,..,N,. Two cases are considered namely ¢? known and ¢? is

unknown. Also we consider different prior distributions for estimating g2 and 1.
4.2 The Maximum Likelihood Estimator Based on Upcrossings

4.2.1 Case 1. Known g2

Assuming o2 is known. Since Ny, Ny, .., Ny are iid P (cll) then the MLE of cl%

is % By the invariance property of MLE, the MLE of A is
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It is straight forward to check that

2 2.2 1
N) _k c*A+ kcAz

E(hniza) = B (ck k2cz

and

The bias of 4 =2, 0 as k — co. Similarly, the variance of ] is
MLE2 = 72 MLE,2

Var(jMLE_z) = Var(

k4 . 4(E(N*)—(E(N2))2).

1 1

6/12 74 Az yr
" ke k2c2+k3c3_k2c2 = 0ask - oo,

Since N is a complete sufficient statistics for A and E (&NCL)) A, then

N(N=~ 1)

oz 18 aMVUE for A.

Similarly, since E ( ) )lz then

% is a MVUE for ;{%.
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k2c2 - ktct

Var (N(N _ 1)) L Var(N(N — 1)),

k41C4 (E(N3(N —1)%) — (E(N(N — 1))3),

3
4)§+ 22 0ask
= — - - 00,
ke  k2c2 as

MSEAp1E2)

eff (jMLE,Zs’:[MVUE): MSEQpvue)

3 1 1
612 72 Az A% A
_ ke + k2c? " g3¢3 T f2cl + k?c?
= 3
41z, 22
kc * kic2

¥

3 1 1
_ 6k?c?2Z + A2 + 8kcA — kcAd

3 = 1.5,as k - oo
4k2c2AZ + 2kcA

4.2.2 Case 2. 02 is unknown

Assuming that parameters o2and A are unknown, then the MLE’s of ¢2and 1 are

obtained as follows.

N N » N Nu? )
c; AZ(c*) Ze 207 1 R
fly,ng, . nld,0) = =2 (k) ' exp (-—czkﬂz(az) Ze 202)
!
=1

2

” N N , Nu 1 .1 %
logf(ny,ny, ..., n {4, 0%) = constant—f—-é-logxl —Eloga —=— =,k A2(0%) Ze 207

202
50
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Taking the first derivatives with respect to g%and 2 yields,

Y
N k(¥ ze 20

d
d—llogf(nl,nz, v, M |d,0%) =

E¥) 1
22 212
and
2 1 a2
d N = Nu?  ckAZ(02) Ze 207
——1 s Me|d, 0%) = —
do? ogf(ny,nz, ..., nkl4, 0?) 252 + 2(0?)2 2
1 5 _u
ek uti2(6?) 2 207 :
2
Setting these derivatives to zero and simplifying them we get
1 _u?
N  ck(6?)2e 207
—_ " —
21 213
1 3 _u? 1 5 _u?
N Nu?  c,kA2(c®)2e 207 ¢,k u2A3(02) 2 202
— + _— —
202 2(0?)? 2 2

Solving these equations yields the MLE’s of A and a2 which are

NZ

1 _uz \%
(Czk (02)2e 20’)

)*MLE,3 =

) _
0miez = 0.
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1 1 1
. ck A2+ (ckA2)2  [cAz 2 c?
E(Amies) = k2 - +5A |e™ > =de ™ ask - o,

2
(Czk e 2o )

It is a biased estimator.

4.3 Bayes Estimation for A when ¢2known
4.3.1 Jeffery’s Prior
The Jeffery’s prior is defined by my(A) < f|1(1)], where I(A) is the Fisher

information about A contained in the sample. Since Ny, Ny, ..., Ny are iid, the

Jeffery’s prior of 2 is derived as follows

d? c 3
I{A)=-E 'a:,ﬁlogf(Nlll) = Z)n 8,
Hence
3

Under 7r; (1) the posterior distribution and is
N3 1
T[] (Alnl' nz, sea gy nk) o Az se—CkAZ’

N 3 1
= ¢3AZ Gg-ckiz

’

where
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5
o -1 N+-
N 3 1 4
€3 = ( f A2 gg—ckAz dg) = _ﬂ_
0

2r(N + ;f;)
Finally,
5
kW3 w3 1
m(Anyny, ..,m) = L)—-/12_'53‘”"“, A>0.

5
2r(v+3)
Under Jeffery’s prior, the Bayes estimator of 1 is

. ® N5 1
A = EQ|ny,n,, s ) = Cgf AZTBe~ckAZ gy
0

(ck)N +§ 2r (N + %)

o (V+3) (0¥

= (ck)? (N + ;) (N + g)

’

1
4 9 5 94z 45
] e _2 — — —— — ————
E(A}) = (ck)2E (N + 4) (N + 4) At—+ T
/11 5
) 2 912 4
Bias (/‘l‘;) = ﬁ‘i‘a’zc—z—’ Oask — oo,
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It is possible to find a closed form for the mean square error of i‘;. Since this mean

1
square error is a function of noncentral moments of P(ckAz) up to fourth order,

then we will skip to use simulation to compare 2{, to it is counter parts.

To find the posterior variance, we find

2 % 2N45 1
E(l |n11n2: -.-,nk) = Csf A_ 4 e—Ck.A.Z d;{’
0

s 21

(kM3 ZI‘(N—E-T
5 21 ¢

2r(N+3) (cMe

= (s 143
Vara () = EAPny.my .. ) — (ER),

- o D)o B) 43

2 2

(ck)‘4(N+§;) (N +Z—) = 0as k- oo,

Assuming ¢ is known, we find the predictive density of N,,, given

Ny, My, e, nk+1. Hence

(st |ng, gy oy T 0) = f FCsal D) TAng ng, o, ) dA
0

54



© Arabic Digital Library - Yarmouk University

3 1
B8 e~ {ct+ck)az da
5 £

5
™ (ck)Na f"" L e
2nie4y T (N +3) 70

5
e+ (ck)Nrar (N + gy t g)

1

5
Npyq!T (N + %) (¢ + ck)VFresatg

5 5
(v +Z),, k o\ g N4
- kt1 (1 - ) ( ) ? nk+1 = 0,1,2, o
nk+1! k -+ 1 k + 1

where
_Tla+x)
(a)y = T(CIT

According to Ghitany et al. (2001), the noncentral " moment of this distribution

is

(v+3),
7
k+1
where S(r, f) is the stirling’s number of the second kind defined via

]
BN My gy s T 6) = Z S(r.J)
j=0

i
1 .
S(r,;)=j—!;(—1)o—z).

Hence
5 k+1 5
E(Nies1|m0 g ooy 1y 0) = S(1,0) (N + —) + (-—-) S(1,1) (N + —)
4/, k 4/,
(k+1)(N+S) N+1 I
= | — -] - - - 00,
i 4 2’
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Similarly,

((,m))" H@D (()) HD Y ((k:))

=3 (w3 (r+3),

The predictive variance is

k+1 5\ 3/k+1\* 9 5
Var (Wt omin) = (S0 0) v+ 2) 1 22 (D) (w+.§) -

E(NZ41[ny,ng, oy ny, 0) = 5(2,0) 22

k 4/ 2\ k

(5 (r+3)-

The variance of the errors of prediction is

vare.£) = var ((52) 1+ - )
ver{ () (r+) e

= ( ) Var (N +——) +VarNg,q,

(k+1
k

1 ((k + 1)*
Af(( v ) +1)—>0

) cklz + cAZ

1
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4.3.2 Estimation under Weibull prior

In this section, we find a Bayes estimators for the parameter A under two cases

namely ¢ is known and &2 is unknown.

4.3.2.1 Casel. Known g2

To simplify the work, we may consider the Weibull distribution with parameters -i-

and b which a conjugate prior distribution for the parameter 4, i.e.,

1 1

m(d) = %(%)—i exp|{ — (—:—)E ,  A>0.

Under this prior, the posterior distribution for A is

1
N1 1 2
m(Alny,nz, ..., my, @) 2227 2exp (—ckA2)exp (- G) ).

N=1

1 1
o< 12 exp (—(ck + b'_?))ﬁ),
Hence,

N-1 11
(Alny,ny, o g, 0) = c4A 2 exp (—(ck + b-f)ﬁ),

where
® N-1 11y A\
(o =( A2 exp (—(ck+b_2)12) dl) ,
0
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1
Using the transformation v = A2, ¢, reduces to

1WN+1
(ck + b_f)

“T U T D

Finally, (4|n,,n,, ..., n,, o) takes the form

1y V+1
(ck +b 2) N—1

1 1
e |- k+b'm), 1> 0,
21N + 1) exP( (€ )

Tr()LIn]_' nZJ sy nkl 0') =

The Bayes estimator of A under Weibull prior is A}V
© N1

- 1 1
w=c, f T exp (—(ck + b"i)ﬁ) da,
0

2I'(N + 3) _(Ck+b 2) 2I(N +3)

V43 NTEL
(ck + b—z‘) 21N + 1) (ck + b'f)

_ W)W+
(ck + b‘%)z

. NP 1
Since, Pl cAz, then

(D) G+ 8) 5 ettt

s
Ab - 1 2 CZ
(ck + b'i)

=A, as k - oo,
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Also, the posterior variance of A} is calculated of follows

N+3 1

2 oo M43 E
E(){ Iny,n,, ...,nk) =cf, Az exp{~(ck+b Z)Az)dﬁ,

1y N+1

= Cq N 1\ N+5
(ck + b-i) 2r(N+1) (ck + b_f)

N+ N +3)WN +2)(VN +1)
- 4
(ck + b_%)

— 0 as k- oo,

Var(i:) = E()»zlnpnz: o ) = (Ei‘:)z'

_(N+HWIN+3YW+2IWN +1) (VN + 22N+ 1)?
- 1\ 4 - 104
(ck + b_Z) (ck + b‘i)

— 0 as k - oo,

Assuming o is known, we find the predictive density of Ny, given ny,n,, ..., ny.

Hence

h(nyiqlng, ng, o, ng, 0) = f [ 1)) T(Alng,ny, .., ny, 02)dA
0

1 N+1
L (ck + rz)

an+1! F(N + 1)

O N+nge,—1 11
k+1 - -—_ 1=
f A 2 g~(ctck+b z)“dl,
0
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1 N+1
i1 (Ck + b—i) F(N + Neyq + 1)

T ! TN + 1) (c +ck+b71

N+ Dy, ( ¢ ) k1
= ' . _crtoz
Ut \e 4 ck+b72 c+ck+b3

It is mean and variance

E(Ngsqlng,ny, ..., ny, 0) = S(LOYN + 1), +

1
ct+ck+b2

1)N+nk+1+1'

1 \N#1
ck+b2
1

1
ct+ck+ b2

1
ck+b2

= — |V +1).

ck+b72

Similarly,

) nk+1 = 0,1,2, e

SN + 1),

_1
E(NZ1In1, g, e, 1, 0) = S(2,00(N + 1) + 5(2,1) (—"i) (N +1); +

5(2.2) -

ck+b2

1
c+ck+b7Z

ck+b2

1
3fc+ck+b2

1
2 ck+ b2

The predictive variance is

60
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(N +1),,
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1
ct+ck+b2
Var(NisqIng, ng, vy, 0) = | ————— |[(N + 1) +

ck+b 2

i 2
3jc+ck+b2
S\ N+2)X(N+ 1)

ck+b2
1 2

ct+ck+b2
- ) 2

ck+b2

The variance of the errors of prediction is

1
c+ck+b2Z
Var(P.E) =Var | { ————F— | (N + 1) ~ Ny, |,
ck+b2
o\ 2
c+ck+b2
=\——— ] Var(N+ 1) + VarN,,,,
ck+b2
1\ 2
ct+ck+b2Z 1 1
= —F— ckiZ +clZ,
ck+bz
N
1 c+ck+b72
=cAZ| k| ——F" ] +1
ck+b72

= 0,u—>0or § - oo,
-2 0,d200r k - oo,

It can be noted that
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1
c+ck+bz (k +1)*

k — +1< T +1,
ck+bz
if and only if
-1 -1
k(c+ck+b 2)5(k+1)(ck+b z),
if and only if

1
0<b2
4.4 Bayes Estimation for A and o2
In the section, we assume that both parameters A and ¢? are unknown. We find

Bayesian estimators for A and ¢?. Since A and o?are unknown, then we need to

rewrite the pdf f(n;,ny, ..., k|4, ¢) in the following form.

k 1
L (cAZ)Y
fnyng, ., nild, 0) = He“"" E—-,)—
j=1 n,-.
N
1
= _c;l_ze-ckli
k .

To simplify, we introduce the following notation. Let C; = ;6;. Hence

N N Nu?
cgl,'{z(az)_Ze 202

f(nl,nz, ...,nkll,o') S

( t .1 _u? )

exp| —czk A2(c“) " Ze 247 |,

njgzl nj ! p 2 (

We have tried to derive a Jeffery’s prior for the parameters (4, o2), but we found

that it has a very complicated form. Therefore, we skip to use another prior for the
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case when both o%and A are unknown. To complete the mission, we consider the

following joint prior distribution for the parameters A and o2.

1

4 1 =2 ¥
(Ajo?) & A2 exp (—czk 22(0%) 2e 25 ), ¢’ >0,1> 0.

(@) 1 (-5) >0
Vs = e — 1|, .
’ %I (ay)(0?) P\ ba? ?

i.e., we assume that o2 has an inverse Gamma distribution with parameters a,and
b while 4 given is o2 has a Gamma distribution with parameters (aq + 2) and %

Under this prior, the joint posterior distribution for A and ¢2 is

1
Yia NP _W&E)
(—Hﬂ)—‘“—w——

(4, 6%[ny,n,, ..,n,) € X Z exp ,0% > 0,A> 0.
(az)”i'l'az'Pl
where
1 _u?
H = 2c,k (6%)72e 202
and

_ {1 Nu? ~1
A

and ¢s is a normalizing constant given by
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=~ -1 N+a,+2
N+a _1_) HYT%
= 2 -HAZ | dA = .
e (J; A exP( H d) 2I(N + a; + 2)

Hence
N+a

‘ Niay 1
(A, 6% [ny,ny ey m) € A2 exp (—HM) HVta+2

1
exp (—waz)
N 1 uz \Mtai+2’
GO (2c2k (62) 2e 207 )

a L

N+a, 1 exp (— " az)
TL’(A., o‘zlnl, Ny, .y nk) X A 2 exp (—H)LZ) Hta+2 _1—1
(0.2)‘12 2

2

b< u?(a; +2)

1 ul(N+a;+2)

where w; = (—'; —-2———) . Therefore, the joint posterior density can be

written follows
(A, 0% [ny,ny, ..., ny) X T(A|0%, 1y, 1y, ... IT(at g, ny, ... ny),

Since  1(A,0%|ny,ny, ..., ny), (6% nyny, .., n,) and (c®|ny, ny, ..., 1y)

are density functions, then the normalizing constant is 1. Thus

(4, 6%|ny,ny, .., m) = (Ao, 0y, my, ... (ot |ng,ny, .., n),
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where

n(a?|ny, ny, ...My) is the pdf of inverse Gamma distribution with parameters

(a; — %’- — 1) and wy and (4|02, ny, ny, ..., 1) is the pdf of a random variable A

1
such that Az has Gamma distribution with parameters (N + a; + 2) and ;{1-

The purpose of writing the joint posterior in the conditional form is to ease
simulation form it. To simulate an observation from 7(4, o2|n,, n,, ey Ny) WE

design the following algorithm

1. Simulate a(zi) from inverse Gamma with (a, — % — 1) and w,.

ii. Useq instep (i) to calculate H.
ifi.  Simulate }{(Q from Gamma with parameters (N + a; + 2) and % Then
(A, 9dy) is a realization from (A, 6%|ny, n,y, ..., n).
(0 (@) 1.1tz k

iv.  Repeat the steps (i)-(iii) L times. The realizations (A, 0%),i=1,..,L repeat
a large sample from the joint posterior distribution and can be used to find
the required summaries about the parameters A and o2 or any functions of

them. For example, the Bayes estimator of A and o2 are respectively

approximated by
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and

1 L
o = Ez 0'(2,').
i=1

The posterior mean of A is
E(AIn.ny, ..,my) = E(E(Moz, Ny, Mg e ),

where the outer expectation is taken over o2, To find the inner expectation, the

conditioned posterior distribution of A given 62,1y, n,, ..., n is required. Since

1
Az|o?, ny,ny, ..., n~Gamma (N + a, + 2), %), then

1
EQA|e*nyny, .., 1) = E (()ﬁ)zlaz,nl,nz, ...,nk)

2
1 1
- Var (AEIG'Z, ny Ny, ., nk) + (E (/‘lilcrz, Ny, My, . ,nk)) ’

(N +a, +2)?
H? ]

=(N+a, +2)+

Now, we take the expectation of the last equation w.r.t o2:

E(A|ny,ng.uny) = E(E(ﬂ.lcrz, N,y ., nk))

1
=(N+a1+2)+(N+a1+2)2E(m),
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=(N+a,+2)+N+a, +2)2 X

’

fm exp (— wllaz) de?
0

1w\ 4
(Zczk (6%) 2e 202) (6)" 2

=(N+a;+2)+ (N+a;+2)*x

(2c,k )2 f @ ewp (- (% — ) %) do*

0 (02)“2‘%1
(N +ay +2)T(a, —% -2)

(112

4{c,k)? (% - uz)ﬂ2 2

=WN+a +2)+

Now, we turn to derive the predictive density of Ny, when both A and ¢2? are

unknown according above prior. So

2] =)
h(nypaln,ng, .ng) = f f f1ld 02y (4, 0%|ny, ny, .., ny)dAdo?
o Jo

nki;
Mgty 2
o, A2 (o
f(sald o) =2 (@)

Ne+s _.%
2 e 207 1
exp (—H}lz)

Nyyp!
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1
exp (— )
1) HN+ar+2 wy o2

Nia, 1
(4, 0%ny,ng, umy) =4 2 exp (—HAZ

4
2

CoN

L0 IR

h(nk_l_llnl,nz, ...,nk) = 2 HN+G.1+2 X
Mysq!

. 1
oo €Xp (_W) O Ning, +a 1
f T ( f A2 exp (-Hl)é) da) da? |,
[} (0’2) 2 a [4)

uznk+1 1 )_1
+ ,
2 wy

where w, = (

and

1 _u?
Hy = 3¢,k (0%) 2 247,

26* ' T(N + Myeqy + ay + 2)HV+01#2

h(ng,.4In,n n) =
L4 3R LS VLY TR S N+ng q+a+2
Tl,rc+1!H1 k+1Tay

X

W‘(n“é—al*'az'l)
2

_ (N + a + Z)Hku (cz)nkn (H)N+a1+2 [‘(%_1.2—_‘114_ a, — 1)

nk+1! H1 Hl —(—'———nk+5-a1+az—1)
W2
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In the section, we assume that both parameters A and o2 are unknown. We find
Bayesian estimators for A and ¢2. Since A and oZare unknown, then we need to

rewrite the pdf f (n,,n,, ..., n]4, ) in the following form.

x 1
1 A2\
i) <[ o €
j=1 7
.
5 1
— c" Az e—ckAZ
. .
ITj-1 !

To simplify, we introduce the following notation. Let ¢, = %. Hence

N N Nu?
c¥AZ(6?)2ze 257 1,1
flnyng, .., mld,0) = X exp| —cyk A2(0%) e 207 ),
=17y

A4 ek ){.(_1)1. AN_;i(az)"(M)exP (— (Nuz +ju2) )

Syl < j! 202

o ook ) (=1)Y N e u? (N +j
i e o I B AT\

j=a 1! e J! 2\ o

To complete this mission, we consider the following priors distribution for the

1]

parameters A and oZ.

1
1 7AN\2 A
Tt(ﬂ)=—-—-(—) exp ~—(—) , A>0.
2b, \b,
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1 1
(o) = Wexp (— (@)), o > 0.

i.e., we assume that o2 has an inverse Gamma distribution with parameters a and

b, while A has a Weibull distribution with parameters b, and %

Under this prior, the joint posterior distribution for A and ¢2 is

(A, ¢?|ny,ny, .., my) & exp| —— | x

o . . N+i-1 i
Z (c2k Y (1)1 A2
o J! vy

oo (- (=G L4 1) )

(0_2)_FN;.J. a+1 '

(A, azlnl.?‘lz, v y) =

@ . . N4j-1 1 &

Z (kY (1Y 2 Az \ &P\ T2
C3 "

j=0 4

exp| — e .
‘\fb_l (az)'Tj+a+l
where
W+ 1
Qj——‘—"'z +b—2' J=01,..
and
) N+j+1 ; -1
(kY =1y, 7 T +j+ ) 4 g)
€3 = ZZ N+j :

; ‘1 —alta
J=0 J'Qj 2
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The Bayes es

- = Y (=i e
= ¢ Z (c )j!( ) J’ 1
j=0 0

Eoo (CZ

timator of 1

N+ +3

k) (1) by

N+j+1 Az
zZ exp|———|dA

v +j+3)rdH 4 )

A=

j'

LI
Q;z ™

zoo (CZ

N-l- j+1

Y(=1ib

r(w +j + prdd +a)

]l

The Bayes estimator for 2 is

-, 3 CILCD

j=0

)

ot

-
]
=]

zoo (CZ

(c2k )j(_l)j

(ck )’(-1)’ f""

0

7 2b,

f'

N+]+1 [(——=

N+
Q j—zi"a

exp{ ——

FITN+j+1)

N+j

LN +j + 1)

k)f(_1)1 N_+ﬁ-__ I—=+a-1)

Ntlia-1
Q; ; ¢
1

N+

zao (Czk )J(_l)] bl

F(N+]+1)F(

+a)

jl

Q j"fi“‘
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Z (c2k V(= 1)%1”3_1 B2\ ew (‘ %‘)

exp| —
P \/E ( )——+a+1

N o1 N+ j
=D w6(N+j+1,5] x16 (= +aq,)
=

(4, d?|ny,ny, ..., my) =

where

N+j+1

(e Y(-1)T(V +j + 1)1*( 14 oy,
o

N+i N+£+1
E“’ (Czk) (_,1)1 I(N+i+ DI(—— > + a)bl
N+i

——+ta
Q2

Therefore, the joint posterior density can be written as follows

(2, 6% |ny,ny e my) = Z;’;l w; 1 (A)m; (o).

where

T (6?%) is the pdf of inverse Gamma distribution with parameters 1-:!- + a and Q;

1
and 77; (A)is the pdf of a random variable A such that Az has Gamma distribution

1
with parameters N + j + land b?.
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To simulate an observation from (4, 6%|ny, ny, ..., ;) we use the following

algorithm

i Simulate ] from the distribution p(J = ) = w;,j = 0,12, ..
ii. Simulate Ay from 7;(4) and 6, from 1 (c?).
iii. ~Then (4, 0%) is a realization from (A, o?|ny, ny, .o, 1y ).
v. Repeat the steps (i)-(iii) L times. The realizations ()l(l-),aé)), i=1,..,L

represent a large sample from the joint posterior distribution and can be used

to find the required summaries about the parameters A and o2 or any

functions of them. For example, the Bayes estimators of A and o2 are

respectively, approximated by

and

Now, we turn to derive the predictive density of N, when both A and o? are

unknown according to the above priors. So
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The predictive density of N, given ny,ny, ..., ny is

h(nysqlng,ng, ..my) = f f f(xslA,02) nt(,0%|ny, 0y, ..., ny)dAdo?
o ‘o

where

e v gyl (~1)) j Rty 2 .2
f(nysqld 0?) = 2 ' Z iz ( 1) In_“zli(GZ)‘(LJrzl"‘) exp (_ (u Ngeyg +jU ))’

! ! 2
Terr: =4 20

and

(4, o?fny,ny, .., m) =

exp| —

i (cak Y (-1Y s iz | e (“ %)
— —-

N
\/E (0.2)%‘”“
Tt (2 Zk i J N 2
_ad Z Y (-1) ﬂﬂ*_zuexp _ 2
le+1 = }'2 '\/E
H
=xp (~4)
(az)—-—-u"'g“ +itar1
ulng,q+jul
where H, = Q; =
P axt = k J(—1y/
h(nk+1ln1,nz; ..-,nk) =22 Z 3'2( )
H 1
]-oo exp (-—-——2-) N+nk+21+2! Az di \de?
exp| ——— as,
0 (O.Z)N%ﬂ"‘-”a"’l P '\/b_l
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_¢ 30y ¥ Z (czzk)f(—l)f

2
Ngyq! J!

N+npy +2j+1
2T(N + nyyq + 2 + 1)1“(% +j+a) R S

ﬁ%l_}.j.{.a

H,
4.5 Simulation

The aim of this section is to conduct a simulation study to the bias and MSE for the

estimators of }:‘{,V, )ti, j-MLE,Z and iMVUE. In this simulation the following different

values of 2, g, b and § which are given Table 4.1.

Table 4.1 Values of g, A, b, and & used in simulation

g 1 5

A

(1) 2 5 7
b 0.1 5 10

The results of the simulation are presented in tables (4.2)-(4.19). From Tables

(4.2)~(4.19) we have to the following concluding remarks.

1. The [bias| and MSE’s are decreasing functions in &, for fixed b, k, o and A.
2. The |bias| and MSE’s are decreasing as functions in 4, for fixed b,0,6 and A.
3. We don’t find any clear pattern in bias and MSE a functions in b for fixed &,

0,0 and A.

75



© Arabic Digital Library - Yarmouk University

. In term of bias and MSE, the estimator jMLE_z is the better than the estimator

3/
il

. In term of bias, the estimator iMLE,Z is the better than the estimator AY'.
. Interm of bias and MSE, the Ay is the better than the estimator i’;.

. In term of bias, the estimator A,y is the best compared to classical estimators

A5, since it unbiased and has minimum variance over all unbiased estimators.

. For some values of b, we may see that the A is better than the other estimators

in term of MSE. This due to the amount of information about A contained in the

prior.
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Tablc 4. 2 Bias and mean squared errors for Ab 41 jMng and AMVUE b=0.1,0=1, }1'. = 2

SR 50 -
lw lj AMLE,Z Amyue
Bias mse Bias mse Bias mse Bias mse
-0.78311 | 1.14387 | 0.841665 | 3.93047 | 0.26616 | 2.63085 | -0.00755 | 2.25893
<0.4156 | 0.626539 ] 0.33798 | 1.15184 | 0.114226 | 0.950484 | 0.004597 | 0.889325
[ 0.30192 | 0.486238 | 0.261383 | 0.794549 | 0.101798 | 0.685063 | 0.023152 | 0.650196

Tablc 43 B1as and mean squared errors for ib -lb:ﬂmez and lmvus b 0 l,0= 1 A=2

100~

i

A'MJ.EIZ

AM VUE

Bias

mse

Bias

mse

Bias

mse

Bias

mse

1 -0.49143

0.739161

0.424319

1.54425

0.143139

122514

0.006061

1.12874

-0.23699

0.358429

0.164402 | 0.494482

0.053792

0.446308

-0.00095

0.431637

017781

0.269554

0.114716 | 0.339713

0.035981

0.315701

-0.0031

0.30843

Table 4 4 Bias and mean squared errors for /Ib ,ib,AmE 2 and ]LMVUE,b—O l,o=1,1=2

1’5’

~

;1]

AMLE,Z

AMVUE

Bias

mse

Bias

mse

Bias

mse

Bias

INse

;-] 0.37239

0.565531

0.263323 | 0.929902

0.078385

0.796126

-0.01252

0.756005

i{ 0.15457

0.252425

0121469 | 0.322104

0.047766

0.298939

0.011164

0.291507

o [0t

0.187082

0.08518

0.222736

0.0327

0.211119

0.006588

0.207404
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Table 4 5 Blas and mean squared €ITors for ).b ,J{b,AmE 2 and }LMVUE,b—S g= 1 /1 2

i e
“W -
zb A AMI.E,Z Amg
Bias mse Bias mse Bias mse Bias mse
271 0.703449 | 3.11653 | 0.869915 | 4.04142 0.291938 | 2.69253 | 0.016995 | 2.29967
10.281067 | 1.05167 | 0.324997 | 1.16721 { 0.101986 | 0.570043 | -0.00727 | 0.910704
0.186668 | 0.691104 | 0.214528 | 0.744014 | 0.056628 | 0.65135 | -0.02118 0.624373

Table 4 6 Blas and mean squared errors for lb i,,. }‘MLE 2 and AMWE,b«5 g= 1 l = 2

100

“W
?Lb

):]

/IMLE,Z

)I'M'VUE

Bias mse

Bias

mse

Bias mse

Bias Mse

;1 0.383304

1.35126

0.444524

1.54214

0.

161866 | 1.21383

0.024048 1.1135

0.142692 | 0.489537

0.160965

0.515714

0.050487 | 0.467424

-0.00419 | 0.452675

0.096554 | 0.333859

0.108757

0.346352

0.030168 | 0.322888

-0.00884 | 0.315874

Table 4.7 Blas and mean squared errors for ).b ib,lmg 2 and AMVUE,b 5 g = 1 fl 2

AM LE2

AM VUE

Bias mse

Bias

mse

Bias mse

Bias Mse

] 0.236894 0.840259_

0.271489

0.816711

0.086096 | 0.781434

-0.00504 [ 0.740685

-1 0.114035 | 0.322308

0.125649

0.334016

0.051892 | 0.309865

0.015263 | 0.30195

(0072472 [ 0213404

0.080272

0.218837

0.027852 | 0.207807

0.001769 | 0.20438
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Table 4.8 Bias and mean squared errors for A, A, ;5 ; and Ay e b=10, 0 = 1,1 = 2

K [0 i T R0 e il
AW ~ ~ -
Ap A AMLE2 Amvye
Bias mse Bias mse Bias mse hias mse
E 2 0.803408 | 3.43357 | (.836676 | 3.87946 | 0.261471 | 2.59409 | -0.01200 2.22864
5 0.346557 | 1.15831 [ 0.34562 | 1.21006 | 0.121641 { 1.00111 [0.011899 | 0.936321
7 - [ 0235031 | 0.753465 | 0.231979 | 0.775616 | 0.073531 | 0.675558 | -0.00455 0.64508
Table 4, 9B1as and mean squared errors for lb ,Ab,AMLE 2 and jMVUE,b-] 0 ag=1, A 2
A ﬁb AMLE,z Amvue
Bias mse Biag mse Bias mse bias mse
2-:;‘1 0.414334 | 1.51421 ! 0.415955 | 1.60102 | 0.13554 | 1.2811 0.00116 | 1.18403
5 0.180885 | 0.518659 | 0.177835 [ 0.528907 | 0.066925 | 0.47648% | 0.012032 | 0.459758
7 | 6.109158 0.33197 | 0.106246 | 0.336516 | 0.027679 | 0.313832 -0.01132 | 0.307201
Tablc 4 lOB:as and mean squarcd errors for /Ib :lb-lm.sz and .IWUE,b—-IO g = 1 ). = 2
..W py j =
lb }Lb RMLE,Z Amvue
Bias mse Bias mse Bias mse Bias mse
" 7| 0.283989 | 0.930608 | 0.28166 | 0.963471 | 0.036008 | 0.821058 | 0.004743 | 0.776895
5‘-‘ 0.117509 | 0.307732 | 0.114828 | 0.311531 | 0.041231 | 0.289607 | 0.004683 0.28278
7 “0.071784 | 0216142 0.069569 | 0.218066 | 0.01729 | 0.208126 | -0.00872 | 0.20523
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Table 4. 11B1as and mean squared €ITors for Ab ,}.b,ilm_g 2 and jMVUE,b—O I,o0= 5 A=2

<50

'W
lb

37
A’b

~

ﬂu

LE,2

AMVUE

Bias

ms¢

Bias

msé¢

Bias

mse

Bias

Mse

0.99132

1.49498

1.58542

10.1058

0.556528

5.67992

0.082579

4.42034

-0.62829

0.917132

0.542733 | 2.23473

0.160263

1.66899

-0.02449

1.50505

[ 04883

0.705881

0.398922

1.40595

0.126908

1.11856

-0.00579

1.03373

Table 4. 12Blas and mean squared errors for Jb , i{ RMLE 2 and jMVU,_-,b—O 1 c=51=2

- 100 -
/'lw i /IMLE,Z Amvue
Bias mse Bias mse - Bias mse Bias Mse
o | 071215 | 1.06166 | 0.708379 | 3.19563 | 0.224689 | 2.25675 <0.00703 | 1.98163
<0.34818 | 0.56319 | 0.310866 | 0.998647 | 0.120578 | 0.841796 | 0.027054 | 0.79185
o [-0.2685 | 0.452031 0.214464 | 0.688566 | 0.079717 | 0.609955 | 0.013169 [ 0.584753

Table 4 13Blas and mean squarcd errors for ib ibnﬁmsz and iMVUE,b 0, 1 g= 5 A 2

2150

;w

)L]

-~

AM LE2

/TM

VUE

Bias

mse

Bias

mse

Bias

mse

Bias

Mse

"y | 0.53676

0.808461

0.482358

1.83297

0.162993

1.41877

0.007811

1.29383

L[ 02584

0.403038

0.193203

0.586257

0.067652

0.521931

0.005595

0.501954

018447

0.302139

0.147126

0.404566

0.057584

0.370127

0.01318

0.359062
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Table 4 l4BlﬂS and mean squared errors for ){b ,lb,IMLE 2and AMVUE,b~5 o= 5 A 2

A‘é," A" - Amvop
_ Bias mse Bias mse Bias mse Bias Mse
~yi'| 115604 |6.33318 [ 154626 |9.79508 | 0.524066 | 5.499 | 0.053464 | 429064
.5 [ 0632653 | 206124 | 0.629253 | 246553 | 0239657 | 181794 | 0.061339 | 1618
- [0.332861 [ 1.22699 | 0.389404 | 139257 | 0.117871 | 141181 | 0.01453 | 103

Table 4 ]5B1as and mean squared errors for iy, Ah"iMLE 2 and AMVUE,b—S g= 5 A=2

100

"W
Ab

/i]

/IMLE,Z

AM VUE

Bias

mse

Bias

mse

Bias

msec

Bias

Mse

[ 0601803

2.62058

0.731613

3.26879

0.245644

2.30129

0.012784

201403

= 026449

0.885343

0.300821

0.968315

0.110892

0.817066

0.017547

0.769766

079118

.588168

0.202389

0.626865

0.067863

0.554629

0.001434

0.532516

Tablc 4. 16B1as and mean squared exrors for l,, l’lbleLE » and AMVUE,b—S o= 5 /1 2

K S “150
“W =
Ab A’ Az Ap vuE
Bias mse Bias mse Bias mse Bias Mse
E 2 0.433472 | 1.6337 0.506708 | 0.506708 | 0.185659 | 1.46269 | 0.029634 | 1.32016
B 5 -4 0.180439 | 0.554035 | 0.202131 | 0.58837 | 0.076296 | 0.52193 | 0.014008 0.500959
: 0.10397 | 0.385442 | 0.117971 | 0.401897 | 0.029068 | 0.372348 | -0.01502 0.363722
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Table 4.17 Bias and mean squared errors for A, A2, Ay, 7 > and Ay yr,b=10,0 = 5,1 = 2

Ap A Amies Ayyue
Bias mse Bias mse Bias mse Bias Mse
2 | 1.32774 | 743346 [ 145739 | 9.3256 | 0.450524 | 5.26743 | -0.01241 | 4.147
5 0.541667 | 2.23068 | 0.55104 | 2.41525 |0.168639 | 1.82328 | -0.01608 | 1.64676
.,‘"7‘ .| 0.384184 | 1.33431 | 0.384542 | 1.4065 | 0.113325 | 1.12738 [ -0.01898 | 1.04623
Table 4 18 Blas and mean squarcd €rrors for ﬁb -ibolmsz and ;Iwug,b—m g=5A1= 2
K I : 100 .
W =
Ay l{, AMLE,Z Amvug
Bias mse Bias mse Bias mge bias Mse
2 0.713413 | 299011 | 0.735825 | 3.31348 | 0.249295 | 2.33963 | 0.016154 [ 2.04958
. 5 - | 2.04958 |0.913169 0.291172 | 0.945789 | 0.101583 | 0.799713 | 0.008409 | 0.754848
7 ;[ 0.210172 1 0.637258 | 0.207057 | 0.652869 | 0.072465 | 0.577944 | 0.005096 0.554525
Tablc 4 19 Blas and mean squared eITOrS for ib ,lb,lmgz and jMVUE,b—IO g= 5 A= 2
AW oo ol -~
i A e
Bias mse Bias mse Bias mse bias Mse
2 0.478626 | 1.73759 | 0.483217 | 1.85074 | 0.164016 { 1.4328 | 0.008915 | 1.30603
X 5 i 0.192699 | 0.602165 | 0.189537 | 0.615861 | 0.064206 | 0.550675 | 0.00226 | 0.520243
: 7 0.128987 | 0.390437 | 0.125936 | 0.396537 | 0.036848 | 0.2366013 | -0.00733 | 0.356829
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Chapter Five

Application
5.1 Introduciion

In these days, it is known that the wind is a good source of clean energy in power
engineering. To generate a useful energy, it is known that most turbines need a
wind speed between 7-10 mph. If the wind speed is very high, then the system
should cease power generation to be protected from damage. On the other hand, a
very low speed, i.e., less than 2mph can not be used to generate useful energy.
Therefore, extreme values of the wind speed process are important since they can

be used to assess the efficiency as well as the safety of a power generation system.

For example, the time that the wind speed process spends above a high threshold
after an upcrossings could be used as a measure of system efficiency. In fact this
time represents a duration of the wind speed process above a high threshold.

Therefore, the distribution of this duration is required.

In this section, we are interested in applying the theory of this thesis to
meteorological data. The data are the daily averages of wind speed at a station in
the Republic of Ireland. The data consist of 6574 observed wind speed averages
over the period 1961-1978 and are  available online  at

http:/lib.stat.cmu.edu/datasets. The first step in analyzing this data is to transform
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the data to Gaussian process or near Gaussian process. If X(¢) denotes the wind

speed average at time ¢, then the transformation Y(t) = X (t)% Gaussianizes the
data. Also, we standardized the data so that ¢ = 1. Figure 5.1 shows the frequency
histogram of the standardized-data together with theoretical normal pdf. It seems to
be that the data can be fitted by normal distribution. Also, a Kalmogorov-Smimov
test of normality is conduced and produced a p-value of 0.15, which means that the
data provides us with no evidence to reject the normality. Figure 5.2 shows the plot

of standardized wind speeds vs. time. The plot suggests a stationary process.

600

500} _/é;\\—\
400} 3‘_
> H
$ 300l
-
H \
200]
100}
o - »
5 4 .3 =2 0 1 2 3 4 5

Time (in days)

Figure 5.1 Histogram for wind speed data
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Wind Speed
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Figure 5.2 Time vs. Wind speed

The next steps in our analysis is to extract the durations and the number of
upcrossings for wind speed process. To this end, we employ the matlab functions
bwlabel in the image processing Toolbox. To test our theory, we divide the data
into two parts. The first part represents the first 3287 observations and the
remaming observations for the second part. The durations are extracted and
classified into k=4 groups with §=1.5. Using T=3287, we present these durations

in Tables 5.1
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Table 5.1.Durations extracted from wind data

Interval Yi(part]} Y;(part II)
[0, 1.5) 133 133
[1.5,3) 29 28
[3,4.5) 11 12
[4.5, o) 0 1

Also, the number of upcrossings for the first part of the data is . j=1V; =173 and

the number of upcrossings for second part is 174. The theory of this thesis

produces the following estimators of A

Table 5.2 Estimate and their standard errors

Estimator Estimate
Apa 1.15004
Amiga 244485
1 1.0433
A 1.04959
Amiea 1.03756
jMVUE 1.03157
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Standard error

0.093239

2.08758

0.158411

0.159595

0.193788

0.157312
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Tables 5.3.Predicted values of Ng

Predictor Prediction Prediction error
Under Jeffery’s prior 173.579 124.495
Under Weibull prior 174.079 124.848

It can be noted that the predicted values are very close to the observed number of
upcrossing 174, i.e., the theory produced an accurate prediction to the future

number of upcrossing.
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Chapter Six

Conclusions and Suggested Future Work

In this thesis, the probiem of estimating A1 the variance of the derivative of a
smooth stationary Gaussian process based on the durations and the crossings of
high thresholds is tackled. Since the durations are observed up to intervals,
grouped data approach was followed to find classical and Bayesian estimators.
Also predictive distribution for a future duration derived. It is shown that the Bayes
estimators as well as the predictive distribution and their characteristics have
tractable close forms. The simulation study showed that the Bayesian estimators
have some advantages over the classical estimators. On the other hand, we derived
classical and Bayesian estimators for A based on the number of upcrossings of high
thresholds. Simifarly, the simulation study also showed that the Bayes estimators
based on upcrossings, have several advantage over the classical ones. Our
simulation work is still not complete, since the simulation work of this thesis was
restricted to the case of known 0. We believe that adding inore simulated tables to
the thesis for the case when ¢ is unknown is beyond the scope of this thesis. For
this, we leave it to a future study. The hyper parameters r and b etc are assumed
known in simulation. If they are unknown, then they will be replace by their
estimates. In fact, this will add some uncertainty to the Bayes estimators. The
effect of such uncertainty on the Bayes estimators could be considered for study.
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As a future work, we propose the following tractable problems:

1. Deriving predictive distributions for

Vinin = min(Vy, ... , V),
Vmax = max(Vl, maa ,VM),
P = V1 + ..+ VM

and

i L g udy sery .
i P ’ ’

where M is the number of durations of X (t) in a future interval of time, and

V1, ..., Vi are corresponding durations.

2. Deriving Bayesian intervals for 4 such as high posterior density credible region

(HPDCR).

8
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